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Parametric Interactions of Optical Modes
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Abstract—A formalism for treating interactions between optical
modes in the presence of time-varying parameters is developed. The
problems of parametric oscillation, frequency conversion, and inter-
nal laser modulation are treated, as well as a new class of interactions
involving parametric modulation in the presence of negative losses.

I. INTRODUCTION

HIS PAPER is concerned with the study of para-
Tme’oric interactions in the optical region. The con-

cept of parametric interactions is taken to mean
the propagation, or oscillation, of electromagnetic waves
in the presence of time-varying parameters [1], (2]. These
parameters include not only reactive ones, but lossy ones,
such as conductivity, as well.

The formalism developed below is relevant to a number
of experimental situations that have been the subject
of numerous recent investigations. Among these are the
the AM phase-locked laser of Hargrove et al. [3]; the
FM laser proposed by Yariv [4], [10] and demonstrated by
Peterson and Yariv [5] and by Harris and Targ [6]; and
the optical parametric oscillator discussed by Kingston
[7], Kroll [8], and demonstrated by Giordmaine and
Miller [9].

Some of the results derived below have been used,
without derivation, by the author in an earlier publica-
tion [10].

II. ExpANSION OF RESONATOR IIELDS

Since a great deal of the analysis that follows is con-
cerned with parametric interactions inside optical res-
onators (or, in general, any resonator with typical di-
mensions large compared to the wavelength), it is worth-
while to derive first the spectrum of modes and their
characteristic frequencies for the case of a passive res-
onator. These modes, considered as a complete ortho-
normal set, will be used to expand the resonator field in
the presence of parametric modulation.

A formalism developed by Slater [11] is found con-
venient for obtaining the mode spectrum discussed above.
It is especially useful, since it is not necessary to specify
‘the exact shape of the resonator so that the results
obtained are very general.

Using Slater’s formalism we define two infinite sets
of vector functions H,(7) and E,(7) satisfying

kB, =V X H, k.= XE,
V-E,=%-H, =0
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and # X E, = 0 at the boundaries of the resonator.
For the moment, k, is considered as a constant, but will
be shown to be equal to w, Ve where w, is 27 times the
characteristic frequency of the ath mode. It follows from

(1) that
277 2 _
Z {[a + ]‘/a‘?a 0 (3)
VE, + EE, = 0.

It also follows from (1) and the boundary condition
n X E, =0 that

Ea'Eb dv =

Ve Ve

H,-H,dv=0 asb 4
where the integration extends over the whole volume of
the optical resonator. The derivation of (4) is given by

Slater [11]. The mode amplitudes are normalized so that

H,-H, dv =

Ve Ve

Ea 'Eb d?) = 6a17. (5)

Using E, and H, as complete orthonormal sets in which
to expand the electromagnetic fields E(7, t) and H(7, 1)
inside the resonator, we can put

2,9 = - % \1/—;pa(oEa<f> (6a)
a6, 0= % —\;—; oo DIL(P) (6b)

where p and € have their customary definitions. For the
moment, w, is a scalar constant and p,(t), ¢.() represent
the time-varying part of the mode fields.

The field hamiltonian, i.e., the total energy, is given
by (using mks units)

i = %f (eB- + uH-H) dv. )
Ve

Substituting (6) and using (5) leads to a “harmonic-
oscillator” form of the hamiltonian

5 =% 2 (pa + igd). ®)

In order to make some more definite statements about
k., w., and the interdependence of p,(t) and ¢,(?), it is
necessary to substitute (6a) and (6b) into Maxwell’s
equations

VXE = —70=—3 (uH) ©
— e 8D 6 Ty
VXH—W_E)?(EZQ' (10)
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The result is

d
pu(t) = S [q.(0) (1
and
ko = w.V e
and similarly, from (10)
d
2 —_— — —
waga(t) - dt [pu(t)] . (12)
Solving (11) and (12) simultaneously yields
¢.(t) = Re [g.(0)e’"*"] (13)

p) = — T [w.g.(0)e’“* ]

This identifies w, and k., as the characteristic (radian)
frequency and wave number, respectively, of the ath-
resonator mode.

III. Tue NorMAL MODES

It is possible to carry out the analysis completely in
terms of p, and g¢,, but it is far more convenient, as will
become clear in the next section, to introduce a new set
of field coordinates ¢, and its complex conjugate ¢* which
are defined by

ci(t) = (20,)"[waga(t) — fpa(0)] (14)
ca() = (202) 7" [wugu(t) + ipa(D)]
s0 that
e = (200)7"(c¥ + ¢.) 15)

1/2
— =2 ¥
be = ’(2 ) (e?

Expressing the total energy (8) in terms of ¢% and ¢,
gives

—Cy).

= D wiak. (16)
The quantity c.c*/h is equal to the total number of
photons in the ath mode. This definition of normal mode
amplitudes is a natural one in the study of parametric
interactions, since the basic parametric mechanism can
be viewed as a ‘“collision” process.in which an integral
number of photons at certain frequencies are ‘“ annihilated”
while a new set of photons of different energiesis ‘“created.”’
Txpressing the interaction in terms of field coordinates,
such as the ¢,’s ,which are related directly to the number
of photons, introduces a desired measure of symmetry
into the differential equations describing this process and
facilitates their solution.

The equations of motion for ¢* and ¢, in a passive
cavity are derived by substituting (15) into (11) and (12).

In a quantum mechanical formulation of the problem (see
Louisell [1]) #™%¢.* and #~¥cq correspond to the creation and annihi-
lation boson operators, respectively.
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This results in

de¥

a = it (17
e~ —joc as)
so that
() = c(0)e" (19)
eH(1) = cH0)eT . |
The total energy at time ¢ is given by 5¢= ., w,c* (t)¢c,(t) =

> e w.c%(0)c,(0) and is thus a constant of the motion.

IV. DigrecTtrIiIc MODULATION IN A RESONATOR

In this section we consider the case of a multimode
resonator whose dielectric constant e is modulated har-
monically in time. The spatial variation of e is left arbi-
trary. The solution of Maxwell equations for this case
can be expressed as a sum of characteristic solutions of
the passive (nonmodulated) resonator with time-varying
coefficients. These coefficients, taken at a given instant,
describe the distribution of the total energy among the
various modes.

Maxwell equations are written, in this case, as

VXE=—u %It{
(20)
V XH=71+ :%[e(?’, H1].

Substituting (6) for £ and I in the first equation of (20)
gives

= 9,

Pa = dt (21)

The same substitution in the second equation of (20)
results in
1 = 1 9 -
——= Wa Qe = — —= — [&(F, O)p.l. 22)
aE\/ﬂ QZ'\/eat[(’)p] ( )
where we assume that no conduction current exists,
ie, 7 = 0. The dielectric constant is taken as the sum
of a constant term and a modulated term

e, t) = € + &7, 1).
Using (22) in (21) gives

Z (_\/—w kaga -+ '\/— )E = "'Z \/- 6t (élpa)E

a

(23)

Taking the scalar product of the last equation with &,
and integrating over the cavity volume gives

2 (1t
a0 = ~20 - > L)
where 8S,, is defined by
K 1 -1 t 7 )
8, = fv ' ﬂ:—)E,-E,, . 25)
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The equations of motion for the normal-mode am-
plitudes are obtained by substituting (15) into (21) and
(24). The result being
.7“’a<ca - ca)

d
fft(c +¢) =

ro - Sl s e o]

'(%(Cf - C,,) = jwa(cf

from which we get:
dek . Wy,
dt = ]wuc: - dt [ ab w, (Clik - Cl))}

de, . d W,
.Ect- = _]wuca ;,Z az i:*gab (cb - Cb):'

If the dielectric perturbation is time-harmonic it can
be written as

(26)

a7, 1) = ¢(F) cos (wt + ¢) (27)
and using (25)
Sab — %Sgb[ez‘(wwd’) + e—i(wt+¢>)] (283,)
where
0, = f o0 5 ., do, (28)
Ve

Equations (26) show that at the absence of dielectric

modulation, S, = 0, the mode amplitudes vary as
¢t = ¢*(0) exp (jw.t). This suggests the substitution
o * jwat
(1) = Di0e )
el(f) = D(t)e ",

Using (28) and (29) in (26) gives

L

de fwat 1 Sab [_:{ T(wtte) i (wttd)
St gieet 1 3T eb le + e 1
di =2 o,

a

aDi

.(Dtjwbeimbl_}_ dt dDb —;wpz)

mz,t + Dbjwbe—iwhz — dt

+ (jwei(w£+a‘a) - jwe—-!(wl-w))(D,ﬁciwbt — Dbe*iwz.l.)}_ (30)

In the following analysis we will make the adiabatic
approximation D, <& jw,D, and neglect the terms in-
volving D, and D% on the right side of (30). We are now
in a position to derive the equations pertaining to specific
situations.

FM Laser Oscillation

Assume an optical resonator of length L corresponding
to a laser with characteristic_resonance frequencies
.
¢ L
where a is the mode integer that is equal to 2L/\. The
modulation radian frequency w of the dielectric constant
is taken as equal to the intermode spacing weeq —

Wy =

FEBRUARY
we/Li.e.,

@31

Using this condition in (30) and keeping on the right
side only those terms that are multiplied by e’“*' (the
other terms are nonsynchronous and give no average
interaction) results in

e:‘wat d_l)_”,;_
di

1 0 W g ]

ey o ¢ : . 1X¢ ~w)t=¢]

= 4 a,at1 (.S (Jwas ]w)D;kﬂe, Gatimalt=d
a

W == Wegy T We

+ Sh.o- \f =2 (g +yw)Da_le”‘°’“"“’“‘”+‘“} (32)

which after using (31) becomes

aD¥ _ .
dt i(]‘sa at1 V Wag Wy € i w1
+ jsg.a—l \/wu—lwa 6+N.D:f_l). (33)
Defining a coupling coefficient «,, by
) QO
Ko = (wan)'* S = () el(r)E By dv (34)

2

Ve

and approximating V@ee1w, 10 the region of interest by
w,, (33) can be rewritten as

dD¥

dt

These are the equations of motion for the mnormal

mode amplitudes of an optical resonator modulated “on

resonance”’ (w = w,4; — w,). Baquation (35) is identified

with a familiar Bessel equation recursion formula® so
that its solution can be written directly as

Dt(t) — e-—iu(qb+1r/2)Ja(Kt) (36)

where J, is the ordinary Bessel function of order a.
The solution including the ¢’“** term is thus

oo
— Z Ja(Kt)eia(qS'l- n/2)et‘wae
-0

= —-j2 _N'Da.n_ - J‘_e+7¢Du_1 (35)

(37)

and constitutes a transient M oscillation mode with a
modulation index xt and a center frequency w,. This mode
of oscillation is discussed in Peterson and Yariv [5], Yariv
[10], Harris and McDuff [13], and by Harris and MeDuff
[14] which takes into account nonlinear behavior and mode
competition effects.

Another mode of M oscillation results when the di-
electric modulation frequency is nearly, but not quite,
equal to the intermode spacing w,+; — w, of the laser
resonator. The deviation from resonance is taken as Aw
s0 that
(38)

War1 — Wy = w — Aw.

*3ee, for example, P. M, Morse and H. Feshbach, Methods of
Mathematical Physics, New York: McGraw-¥ill, 1953, pt 2, p. 1323.
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Using the substitution

Dx(t) = G(t)e'******%) (39)
in (32) yields
\ .
X +iareGr = ~E@r+62) (o)

where we made use of (34) and neglected, again, the small
dependence of « on the optical frequency in the region of
interest.

The steady-state solution of (40) is

GF = (~1>°J.,(i)- | (41)

The complete optical field can be written as

+ o

o) = 2

a=—x

Ct(t) — za: (_l)aJa(i%i[(wahzdw)Hrwl’ (4_2)

and is to be viewed as the basic resonator mode in the
presence of a modulated e. ¢(t) corresponding according to
(42), to an FM oscillation with a center frequency «, and a
modulation index (x/Aw) [10], [13]. Frequency modulation
of optical lasers in which the modulation of e is caused by
modulating an electro-optic crystal inside the laser resona-
tor was proposed by Yariv [4], [10]. Revelant experiments
were performed by Peterson and Yariv [5] and by Harris
and Targ [6]. Harris and MecDuff [14] have extended
the theory to the nonlinear region and considered the
effects of gain saturation and mode competition. Some
detailed FM laser experiments have been described by
by Amman et al. [18].

Parametric Amplification and Oscillation

Another situation which may be treated as a special
case of the formalism developed above is that of parametric
oscillation (or amplification) in a multimode resonator.
The starting point is, again, (30). We assume that the
interaction is limited to two modes;® a “signal” mode at
w,; and an ““idler” mode at w.. The dielectric modulation
frequency w is equal to the sum of w; and w,

&(F, 1) = () cos (wt + ¢)

W =W +W2.

43)

For the case of two modes (30) becomes

dD;k fwit ?."-’2 W2 ilat+é—wat)
dt € - 4 @, Sn.ze D2

i"’_ I‘;_; Flwt+d—wat)
+ 4 le S .26 D,

*In the optical region this discrimination is due to the fact that
the coupling coefficient Si,2 (or x1,2) depends on the direction of
propagation in the nonlinear crystals which is modulated dielectri-
cally and will usually be vanishingly small except for one pair of
w3, 2. In the microwave region the mode spacing, for small cavities,
is rgcéng?ua,l and coupling between more than two modes can be
avoide:
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where the “slow” terms involving D, and D, on the right
side of (30) have been neglected. Using (43) gives

d(li)tf — jg_Dze+i¢
(49
dD . _;
a = ~igDe”
where x = «;, as defined by (34).
The solution of (42) is
D%(t) = D*(0) cosh s + jo™"*Dy(0) sinh
2 > @)

Dy(t) = D,(0) cosh'g. — DA sinh"—zt-

Equations (45) describe the temporal buildup of oscilla-
tion in a lossless parametric oscillator.

To obtain an expression for the threshold of parametric
oscillation we must take cognizance of the losses that,
up to this point, have been neglected. This can be done
formally by introducing an effective conductivity ¢ in
the analysis with ¢/e equal to the decay lifetime in the
mode. This introduces an extra term (—o/2¢)c% on the
right side of (26) which eventually shows up as

dD¥ @;

—_ %1 = - K is
gt = QQIDI +72D23

dD2 ws

dt ~  2Q,

where the conventional substitution ¢/¢ = /@ has been

made. The Q factors can now be considered as represent-

ing all the mode losses including that of external coupling.

The start-oscillation condition is derived by putting

dD*/dt = dD,/dt = 0. The determinantal equation for
nontrivial solution for D¥ and D, gives

(46)

D, — j5 D™

Wiy 2

X
which using (34) with @ = 1, b = 2, becomes

a 5 = 1
—=E-E,dv = .
f,,, 2 0T V.,
This is the start-oscillation condition. It may be compared
with the corresponding lumped-circuit expression for para-
metric oscillation that reads

Ac 1

2V - vV Q,Q,

where Ac is the amplitude of the time-varying part of
the circuit capacitance, ¢, and c, are, respectively, the
capacitances in the signal and idler circuits.

In the optical parametric oscillator the modulation of
the dielectric constant is brought about by applying an
intense ‘“pump”’ optical field E,(7) cos wi to a nonlinear
crystal medium characterized by the nonlinear suscepti-

(47
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bility tensor elements x;;; [15], [17]. This modulation
can be considered as an effective modulation of the
dielectric constant €, (7) according to €, () = xF,,(7) where
x is the appropriate x,;: element.

This point of view has been justified in a detailed anal-
ysis of the optical parametric oscillator [20].

It may be interesting to estimate the threshold require-
ments in terms of known materials and available pump
powers. When the index matching conditions are fulfilled
[19], [20], the spatial integral of (37) is equal to unity
and the threshold condition becomes

66 XBpO > I

2 2 \/‘Qz’

since the nonlinear coefficients x are usually quoted in
cgs units we use the equivalent egs-threshold expression

2wxE 0 1
X S
« T V.
In a typical optical resonator with a length of 5 cm, a
loss per pass of one percent, operating at a frequency of
3 X 10™ ¢/s (1 w), the quality factor Q, ~ €, is of the
order of magnitude of 10%. Choosing, as an example,
KH,PO,(KDP) as the nonlinear crystal, the appropriate
nonliniear constant is [21] x.., ~ 3 X 107°. Substituting
these values and e &7 2.2, into (48) gives

(48)

E,,~2 X 107 %esu

for the threshold pump field. The corresponding power
density is 5 X 10° watts/em”, a number casily attained
with pulsed lasers. Tf instead of KDI> we calculate the
threshold pump field for a erystal such as LiNbO; with
x & 3 X 107% esu [22] ,the result is

B~ 2 X 10 %su

which corresponds to a threshold power density of ~350
watts/em®. The last result indicates that a CW para-
metric oscillator is quite feasible. This power density
is easily available instde the optical resonator of present
day gaseous laser oscillators. This suggests incorporating
the nonlinear erystal into the laser oscillator for parametric
CW oscillation. A pulsed parametric oscillator using
LiNbO; has been described by Giordmaine and Miller (9],

V. Loss MoburaTioN

Another class of parametric interactions results when
a lossy, rather than reactive, parameter is modulated
harmonically. A form of loss modulation was employed
by Hargrove et al. [3] who introduced an acoustic dif-
fraction cell into the optical resonator of a laser oscil-
lator. The working equations for this case and a discus-
sion of their implication have been given by the author
[10]. This section includes the derivation and some ad-
ditional discussion.

The modulation of loss will be introduced by allowing
the effective conductivity ¢ of the resonator medium to
vary in space and time so that Maxwell equations can be

FEBRUARY
written as
V X I = off, z)E+e@
(49)
SRV
V XE = —yu ot

Substituting for # and E their expansion according to
(6) and using (3) results in

1
2

= waQukaEa
Ko

— ) B — Ve X g (50)
Ve % 4
for the first equation of (49) and in
G = Do (51)

for the second.
Taking the dot product of (40) with ¥, and integrat-
ing over the cavity volume leads to

w‘iqb = - Z Sa‘b(t)pa - ﬁb (52)
where

Sl = 61 f o7, O, de. (53)

Equations (51) and (32) are the equations of motion

Jor the p,s and ¢;’s. By substituting for p, and ¢, from

(15), we obtain, after some rearrangement, the following
cquations for the normal mode amplitudes:

dc*

TR j(D,,Cf + E Kb.a([)(c:‘ - Cb)
dl "

Ir

(>4)
de,

dt Z Ky n(f)(co ch)

= jwiCs —

where
ROREE SWON

Taking the conductivity as the sum of an average term
and an harmonic perturbation

o(F, 1) = oy + 0,(F) cos (wl + ¢),

the expression for «, ,({) becomes

ke K, flwt+d) -t
Kb.u(t) = ‘)_0 Oay + # 1_(3’(“” L2 +¢ ;(u.t+¢)]

ba = T /_f o \(E,-E, dv.
Ve

A substitution of (55) into the equation of motion (54)
gives

de¥ _
dt J9uCa

(55)

(56)

g—: (c* — c)

+ bz’ﬁf)._o [ei(wl+¢) + e-i(wu@)](ct —¢) (7)
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and its complex conjugate for de,/dt. These are the main
working equations.

Consider first the case when the modulation frequency
w 1s equal to the mode spacing (or a multiple thereof)
of the optical resonator. It is further assumed that the
resonance frequencies are equally spaced so that

(58)

Wty — Wg = Wg ™™ We—1 = W.

Substituting (58) into (57) and retaining on the right
side only the synchronous terms, i.e., those having exp (ju,t)
time dependence, gives

dci< _ (- _ ﬂ) % Ka,a+1 —itwt+d) %
ar = Uee — 5 je + Ty ¢ Cas1
+ Ka,2a—1 ei(wt+¢)cf—l. (59)
A substitution of
C’ﬁ(t) — Dt(t>ei[(wa+im/2s)¢+a¢] (60)
a.nd taking «, .o1 = Ko,ame1 = K
aD¥
B2 _ & (D + Dr) (61)
whose solution is [20]
D) = I,(xt)
which upon substitution in (60) yields
) C*<t) I (Kt 1[(wa+am)i+¢¢le-’(n/2e)t (62)

where v, is the frequency of the reference mode, ¢ = 0.

Another situation of practical importance, discussed
in Yariv [10], results when the modulation frequency
is slightly off resonance, i.e., when

Wary — W = 0 — Aw

where Aw is the deviation from resonance. Defining the
variable D*(t) by

Cf — D,';(t)ei[(wa-!-aAw)t+a¢+a‘r/2]e—(n/26)t

and substituting into (59), using

War1 — Wo = @ — Aow,
gives
3
dD + jaduDE = j5 D, — jE DL, (63)
whose steady-state solution (dD*/dt = 0) is
[ —
D3 I (Aw)
so that ¢*(f) is given by [10]
c,;;(t) — Ia<_AK_w>ei[[w¢+aﬁw)t+a¢+a1/2]. (64:)

The new ““super mode”

o) = et
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where ¢,(t) is given by (64), corresponds to an optical
field at «, whose envelope is made up of a train of pulses
with a period of 27/w [10], [23].

VI. PARAMETRIC OSCILLATION BY
Loss MoDULATION

Since reactive parametric modulation can, as discussed
in Section IV, give rise to oscillation, it is of interest to
explore, at least on paper, the posmbﬂﬂ:y of oscillation
via loss modulation.

The starting point is (57) w1th the modulation fre-
quency « put equal to the sum of two resonance frequencies
that are taken as w, and w,

W= Wy +OJ2. (65)
After substituting (65) in (57) and defining D*(f) by
cx(D) = Dx(He’ (66)
the synchronous part of (57) becomes
dth;k — _9’_03 D* _ %ei‘#Dz
(67)
dD, _ __@2 Ki.2 —idyys
a - D, — D) —=¢ *D3}

so that D* couples to D, and vice versa. The steady-state
oscillation condition results in a determinantal equation

__ 001002
K2,1K1,2 = & .

(68)

Under ordinary conditions when o, and o,, represent
the passive losses of modes “1” and “2”, respectively,
(68) cannot be fulfilled. This follows from (56), which
shows that «,,. < (1/2¢) V w,/w, o1 and from the fact that
the modulated part of the conductivity o, must satisfy the
condition o, < oy, Where o, is the average conductivity.
Equation (68) can be satisfied, however, when the average
losses of mode “1” (represented by o) or of mode “2”
(002) are reduced without a similar reduction in the mod-

~ ulated conductivity ¢;. This could be the case if the total

conductivity of mode 1, for example, is given by
o = 0§ + o:(F) cos (0t + ¢) — o]

where ¢}, represents the passive resonator losses at w,
and satisfies the condition o5, > o,(7). The term —g}!
represents some gain mechanism. at ;, such as that due
to an inverted laser population. Under these conditions
oo; in (68) is given by

Gy = 001 — 001
and can, in principle, be made small enough so that the
condition of (68) for parametric oscillation obtains.

In the case of reactive modulation it is well known
that the numbers of photons generated at the various
frequencies satisfy the Manley-Row relations [24]. In the
case of the parametric oscillator this relation takes the
form P;/w, = P,/w, where P; and P, are the total powers
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produced at the signal (w,) and idler (w,) frequencies, re-
spectively. These relations are satisfied by (46).
In the case of loss modulation we get directly from (67)

d * _%n -
—d_t [‘-"x 1(‘)D1(t)] (wlD D )
— 10y *DIDY + DD,
(69)
d * _ Doz
;i_t[“-‘z 2(t)D2(t)} - (W2D*D2)

— —l) w (e DXD% + ¢°D, D.).

According to (16) and (66) w,D%D, is the energy stored
in the ath mode. The last term in each of the equations
in (69) represents the power produced by the loss mod-
ulation. Since, according to (56), k., = Kky,.0., these
powers are equal and we can write

P1=P2

where P, and P, are the powers generated by the non-
linear loss modulation at w, and w;,, respectively.

As pointed out in Louisell et al. [2], the parametric
equatlions in the time domain have the same form as the
corresponding spatial equations. As an example consider
(67). The spatial equivalent of these equations is

3
“d’; = —1a D — 220D,
B (70)
dD o
e
where «; = o9;/ec, ¢ being the velocity of propagation,

« is the spatial attenuation constant, and ¢; ; is related
to %, ; by
Ci.i = Ki,i/C

when index matching [9] obtains. I'rom (70) it follows that

* 2
d;Dzl = (‘ﬁ + % Ca, 101 ")D* + (s + an)es €D, (71)
2 4
Consider the special case when oy + ay = 0, 'i.e., when

the negative losses (gain) of one wave are equal in mag-
nitude to the losses of the other. When this happens (71)
has a simple solution given by
Di(z) = D%(0) cosh (yz)

- [a‘ D%(0) + 92 ' ”’Dz(O):I sinh (vz)

Dy(2) = Dy(0) cosh (v2)

fach
sl b>

(72)

D,(0) + %;2 e"‘D";(O):l sinh (v2)

where
2
= %(011 + 01;202,1)”2
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Taking the case of a single input at w, so that D%(0) # 0
but D,(0) = 0, (72) becomes

Ii

D#%(z) = D%(0) cosh (y2) — f;’:; D*(0) sinh (yz)

@3)

—Lz mie D+ () sinh (v2).
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Equations (73) describe how the amplitude of the input
wave at w, is amplified by a factor ~(1 — «,/2vy)e’*
for vz > 1. In addition, a new wave at w, = w — w; I8
generated so that the output can be taken at w, or w,.

Equations (73) satisfy the condition PP, = P, derived
in the preceding section. In this case it takes the form

[(Di(2)D%(2) — Dy(0)D3(0)]w; = Dy(2) D2

VII. PARAMETRIC FREQUENCY CONVERSION BY
DierLEcrric MODULATION

In the parametric frequency converter the modulation
frequeney o fulfills the condition

(74)

W, = w +

so that 1t is equal to the difference of the two frequencics
that it couples and not to their sum. When (74) applics,
the synchronous part of (30) becomes

H*
= e
(75
*
= ien:

where « 1s defined, as in (34), by

= (waz)l/zf i:;,(j) B, B, dv.

<

K = Ki,2 = Kz

Equations (75) do not include losses. Their solution, as
is well known, [2], [16], and [17], corresponds to a periodic
exchange of encrgy between modes 1 and 2 deseribed by

DA(t) = D¥(0) cos ( ‘) — je*D%(0) sin (.;) o

3(t) = D%(0) cos (K—zt) — j¢"*D(0) sin (%)

where, according to (16), the energy in a mode, say mode
a, is given by w.c.c* = w, D, D*%. 1t is of interest to in-
vestigate the effect of the inclusion of losses (positive
and negative) on the behavior of the frequency converter.
This is done by adding, phenomenologically, a dissipative
term that accounts for the decay (or growth) of radiation
density in each mode at the absence of coupling. Equation
(75) is rewritten as

dD¥ oy K g
= =5, Dt —i5e’"D}
dt 2e 2
(77)
* .
D s sy

Restrictions apply.
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where oo, and oo, are the effective conductivities at w;
and w,. The determinantal equation resulting from the
steady-state condition is

T01992 __ — 2
€

(78)
A steady-state oscillation is thus only possible when one
of the two modes has (sufficient) negative losses. This
can be accomplished, for example, by having one of the
modes amplified by a laser transition simultaneously
- with the dielectric modulation.

VIII. ParamMETRIC FREQUENCY CONVERSION BY
Loss MODULATION

Assume that the frequency « at which the losses are
modulated is equal to the difference of the frequencies
of the two resonances that are coupled by it, i.e.,

W, = @ + @;. (79)
The synchronous part of (57) becomes
*
% = jwct — _'Cx _I__ K21 gtk
(80)
¥ .
% — 9&520‘? . %egcf + %ei(wthﬁ)c’;
which after substituting ¢*(f) = D*(t)e’“*" becomes
dfi)tik — 0'01 D* + %e—iél);
' (81)
aDy _ "oz = 4 K2 demyw
7o D + 5 € D%,

- The determinantal equation resulting from the steady-
state oscillation condition is

G010p2
—=z

= Kg,1K1,2 (82)
and is the same as that for the loss modulated parametric
oscillator, (68). The argument following (68) applies,
consequently, in this case and shows that in the presence
of sufficient negative losses simultaneous oscillation at
@, and w, can be sustained by “lossy” pumping at « =
e — W,

In 2 manner similar to that discussed in Section VI

it should be possible to make a spatially distributed

frequency converter for converting a ‘“low’”’-frequency
input at @, to an output wave at w, = w + «;. This may
be especially useful for converting a low-frequency (say
infrared) signal to a visible (or near visible) one where it
can be detected efficiently and with a fast response time
with conventional photoemissive detectors.

IX. CoNcLUSION

The equations of motion governing the interaction of
optical modes in the presence of time-varying parameters
have been derived. A formalism of normal modes is
developed which results in concise and symmetric formu-
lation of the problem. Two general types of modulation
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have been considered: 1) modulation of the dielectric
constant and 2) modulation of the losses. In addition
to treating some well-known cases such as parametric
oscillation and internal mode-locking in laser oscillators,
new interactions involving loss modulation and dielectric
modulation in the presence of negative losses have been
considered.
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