28

I, — )
Ba[B: + Ig + ¢')1

3t — o) =

an)

It is possible to distinguish between two distinet QC
cases: Case I where the output transition occurs between
levels 3 — 1, and Case IT where the output transition
occurs between levels 3 — 2. For Case I, the output
flux is ¢8sns, and this flux normalized to the signal flux
T, is the quantum efficiency 7;,:
_ q(l — e—v;nd)

VT g+ ¢) + b, 0 2/m0,P,

(18)

and where for all possible parameters 4, < 1. For Case II,
the output flux is (1 — ¢ — ¢')8sn; and the steady-state
quantum efficiency 7, is

(= g— ) —
1= T )+ e, 2/ P, (19)

and 7, can be greater than one.

The QC rise time is defined as the time required for
the output flux to reach 90 per cent of the steady-state
flux for a square leading edge signal pulse. Using (14),
we find the rise time 7, is given by the eq.

artsr

e’ = IO{cosh T'r, + %sinh 1"1-,}

(20)
where o and T are dependent on pump power. The 7,
satisfying this equation for a given pump power can be
found graphically.

In the region where T, is large enough to saturate the
value of 7,, the expression of (20) can be simplified to

(e+q’) (r-In2/75) ~ 10

e 21)
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q+q"

An expression identical to (20) is found for the fall
time 7, when the signal flux is abruptly shut off.

(22)

Tr
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Quantum Theory for Parametric Interactions
of Light and Hypersound

A. YARIV, MEMBER, IEEE

Absiract—The problem of energy exchange between two electro-
magnetic modes of different frequencies and an acoustic mode is
formulated and solved. The results of the quantum mechanical
analysis are also analyzed in classical terms and are found to be
consistent with the theory for parametric interactions. Specific
cases treated include: parametric amplification of light, stimulated
Brillouin scattering, and frequency conversion.

Manuscript received February 19, 1965.
The author is with the California Institute of Technology, Pasa-

dena, Calif.

I. INTRODUCTION

N THIS PAPER we consider the general case of non-
linear interactions involving electromagnetic (EM)
and sound waves. The treatment is quantum mechan-

ical, but the final “working” equations can, also, be con-
sidered as classical.

The formalism developed here constitutes an extension
of previous work by Louisell, Yariv, and Siegman [1]
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describing parametric interactions within an ensemble of
EM waves.

A Boson quantization for both the EM and sound waves
is used to obtain a set of differential equations which
describe the coherent interaction of an arbitrary number
of modes. These equations are solved for the case of two
EM waves interacting with one sound wave. The first
case discussed is that of an intense EM wave with a
(radian) frequency w, in the presence of a sound wave
w, and an “idler” EM wave w;, where w, = w; + w,. This
case, which will be referred to as parametric amplification,
includes as special cases: a) Parametric amplification of
the idler wave, b) Parametric amplification of sound, c)
Spontaneous oscillation of the sound and idler waves
(Stimulated Brillouin Secattering [2], [3]), d) Generation
of an idler wave by amplifying the energy, measured in
number of quanta, of an input sound wave and, e¢) The
reverse of d). '

The second case discussed is one where the intense EM
pump wave corresponds to the intermediate w, = w; — w,
frequency. This leads to periodic energy exchange between
the sound wave and the EM wave at w;. In contrast
to the first case the average number of quanta is not
amplified.

The equations of motion, in the Heisenberg representa-
tion, for the creation and annihilation operators are solved
for the case of no losses. These are used to obtain the
expectation values of the various number of quanta op-
erators. In the classical treatment we merely consider these
operators as classical, normal-mode variables. The equa-
tions are in the form of the coupled-mode equations which
have been found most suitable for treating parametric
interactions [4]. Losses are added phenomenologically to
obtain the threshold condition for parametric oscillation.

II. QuaNTIZATION OF THE ELECTROMAGNETICC FIELD

We assume that the electromagnetic field is confined
within a closed surface S of infinite conductivity and
arbitrary shape. The dielectric medium is assumed lossless
(the case of a lossy medium will be discussed in Section
VIII). The total electric field E(r, {) and magnetic field
H(r, t) are expanded in terms of Slater’s modes® E,(r, £)
and H,(r, ¢), respectively

Eq 1) = % 2 pOE® 0

H) = 3 \/i;wqua)m(r) ©

e and u have their conventional deﬁhitions, mks units
are employed throughout. The eigen vector functions obey
V X E, = kH,, V X H, = kE,
E,Xn=H, Xn=0 on S.
It follows from (3) that

®3)

fEl-Ede=fH,-H,,,dV=O i 1= m. (@)
v v
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The functions are normalized according to

[ BBV = [ BoHaV = 5. ®)

v v

Substitution of (1) and (2) into Maxwell equations yields
d2

and similar equation for p;. The constant k, appearing
in (3) is identified as k; = w, v ge. The total EM field
Hamiltonian is given by

@

where use has been made of (1), (2), and (5). Considered
as conjugate hermitian operators, p, and ¢, obey the
commutation relations '

H=uf H2dV+ef B AV = X (0} + «ig)
4 v l

[Pr, Pl = (00, @l = 05 @1, Pul = hb;, . (8)

The creation operator a; and its hermitian adjoint the
annihilation operator a, are defined through

h 1/2
@) = \5=) i) + a®)]
<2wl) . ©)
pi) = (%) “fas) — i)

so that

1\ .
0t = (o) s — 0. %)
Substituting (9) in (8) gives the commutation relations
lar, an] = a7, an] = 0
[a:(8), an(D] = 61
In terms of a ¢; and a* the field Hamiltonian (7) becomes

H, = IZ hwz(aiaz + %) (11)

(10)

The operators a;, a’; are in the Heisenberg representation.
Their time evolution is given by

%“7’ - ;1;—2 las, Ho] = —iwiay (12)
so that
a, () = ae e (13a)
a’ is, likewise, given by
ai(t) = age e, (13b)

Denoting by |n,) the set of eigenfunctions, of the op-
erators a,ha;, we have

az; |'nlo> = (N + 1)1/2 Inzo + 1)

[427 |’nzo> = (nzo)l/2 lnlo - 1)

(14a)

and

Qoo | o) = Mg | Muo) (14b)
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so that, in view of (11), n; is the number of quanta,
ignoring zero field vibrations, in the I/th mode at ¢ = 0.
For the case described above for which (13) apply, we
have aj (f)a;(t) = aj,a;0 s0 that the excitation level (num-
ber of quanta) in each mode is a constant of the motion.
In Section IV we will introduce the coupling between
modes and the excitation of the individual modes will
be time dependent.

ITI. QUANTIZATION OF THE Acoustic FIELD

We assume a homogeneous isotropic medium of mass
density p, of length I, and bulk modulus (elastic stiffness
constant) 7', let the deviation of a point & from its equilib-
rium position be given by ¢(z, ¢). The strain along the
z direction is then given by d¢/dx. The Lagrangian density

a is [6)
_1 a_q_)z L <9g) 5
“‘2"(az — 2 M\ow) - (15)
The momentum canonically conjugate to ¢ is
da
= — = p(. 16
P=5i= M (16)
The Hamiltonian density 3¢ = p§ — « becomes
2 2
_pl 1 (@) .
=0y T3\ a7

The operator ¢(z, t) can be expanded in a Fourier series as

gz, t) = L7 3 Q)™ (18a)
k=—ow
~ where
+L/2 .
Q) = L7 [ gt e d. (18D)
From the hermiticity of ¢(z, ¢) it follows that
Qe = Q-1 (19)

so that the Q.’s are not hermitian operators.
In a similar manner we introduce P, = (P_;)" through

7172 rLr2 ik
P, =1L p(be dt
—~L/2

so that

plx) = L7V 3 P . (20)
k
The total Hamiltonian is H = [ 3¢ dV.
Substituting (18) and (19) in (17), carrying out the
mtegration, and making use of the closure property of
e gives

+ o

n= 3

f=—o

(~1— PP, +1 Tk?QkQ_k)A @1)
2p 2

where A is the cross-sectional area of the acoustic wave
normal to z. The vV/AQ,’s and v/ AP,’s obey commuta-

Aprid

tion relations identical to (8). The only noncommuting
pair is (@, P;) for which

A[Qk) Pls'] = ihak.k’-

The annihilation and creation operators for the phonon
field are introduced by

(22)

. ) —4_ 1/2 ] <_]_1_4_.>]/2
Gr = _1’(2pwkh) ot \Ghe) I G (232)
and its hermitian adjoint
. A )1/2 <24_-)1/2 i
=iz P+ (GE) mae  ew

o = (T/p)" I
in the medium.
and a7, gives

. f? ) 1/2 .
()" L
Qk - <21‘A lkl (ak + a—k)'

It follows from (22) and (23) that the only noncommuting
pair of operators is, again, a;, a’ for which

= pok where v, is the velocity of sound
Expressing P, and @; in terms of a,

a-y)
(24)

laz, a;,] = Op e (25)
Using (24) and (25) in (21) leads to
Hacoustic = Z hwk(aql;ak + %)' (26>
&

The operators a’, and a, are the time-dependent (Heisen-
berg representation) creation and annihilation operators
for the phonon modes. Their properties are deseribed by
equations identical to (14).

IV. Tue InTERACTION BETWEEN MoODES

In the absence of nonlinear interactions the total Hamil-
tonian, including both acoustic and electromagnetic modes,
is given by

Hy = X hoaio + 1) + L haldla +3) @D
where the  and % denote summation over electromagnetic
and acoustic modes, respectively. We have already shown,
in Section II, that under these conditions the operators
are given by a% = q, exp (iwi) so that {a}()a.(t)) =
{a%(0)a,(0)). The number of quanta in each mode is, thus,
time Invariant and no energy exchange takes place.

The interaction between modes is introduced in a
manner suggested by Louisell et al. [1]. In that work
it was shown that a time varying dielectric constant can
provide the necessary coupling between modes. This varia-
tion was introduced explicitly into the formalism. In our
case the dielectric modulation is introduced implicitly by
allowing the dielectric constant to depend on the local
strain dq/dz. The acoustic vibrations can thus be viewed
as causing the time and space variation of the dielectric
constant which in turn couples the EM waves.
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We assume that the strain dg/dx and the resulting
dielectric modulation §e are related by

dq

ax 28)

e = —y —
~ can be identified with the electrostrictive coefficient of
ref. 2 by noting that the fractional density variation &p
is given by 8p/p = —3¢/dz. The perturbation Hamiltonian
H’ is given, as in Louisell et al., by the added stored
electromagnetic energy 1 [ 8eE° dV resulting from the
change in e.

0= _'Yf 9 pe gy (29)

According to (18a)

aq L-—1/2 E szkeikz

ox J R—

Using (24) and reversing the order of summation for the
terms involving a_, results in

- v £ @) (e

where V = LA.
Substituting (30) in (29), making use of (1), (5), and
(9) and earrying out the integration yields

3 ,[V—m kgm(k)(hwk) (Ikl)

g ==X
S

(ae™™ — ate™™) Z Z =5 (ww)"”?

— aie™ ™) (30)

(a7 — a)a — az')Ez(l')‘Eu(f):I av (31)

In terms of the coupling coefficient

—y B\ 1/2 ik
K117 ,8>0 — _46_‘ m (@zwz'wk) fve zEz(r)'Et'(r) av

and
Kipr,—~p = (Kl,l’.k)*- (32)
Equation (31) can be rewritten as
H = Zl: IZ Z [Kx.t'.;: a’k(a+l - az)(azf— a;')
4 k
+ (Kl.l'.k)*a:(a: - a,)(aﬁ - aw)]- (33)

The total Hamiltonian is H, =
given by (27).

The equations of motions for the boson operators can
be written directly by using (12) with H, replaced by
H, + H’. The result is

d:llt’ = 'l:(x}at -_ 'l:kz ‘E [K’-_hl'i ak((f; - az)

Ky 1,x * +/ o+
+ 7 az(a? — a;)

H, + H’ where H, is

(34)
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so that in general each mode j is “coupled” into all the
other modes. Fortunately we can reduce the “hopeless”
case represented by (34) to cases involving a small number
of interacting modes without sacrificing physical realism.
We notice, first, that the perturbation contribution within
the double summation sign, includes terms oscillating at
radian frequencies 4w, = ;. The nonperturbed term
oscillates at a frequency of w;. It follows that synchronous
contribution can arise only from perturbation terms where
+w, & w; = w;. The contribution of other terms gives
rise to rapidly fluctuating terms which average out to
zero over time intervals of interest. As pointed out by
Louisell et al., the argument presented above is equivalent
to retaining only the secular part of the Hamiltonian,
thus conserving energy. A further reduction of the num-
ber of interacting modes is brought about through the
coupling coefficient x; ; ;. As will be shown in Seetion X,
;1. 18 generally very small except for special cases in
which phase matching takes place.

V. TarEe MobE INTERACTION

The remainder of this paper will deal with cases where
the interaction is limited to three modes only. Two of
the modes will be taken as electromagnetic and the third
mode as acoustic. Adopting the convention of parametric
interaction we will designate one EM mode, usually the
intense input mode, as the pump and take its frequency
as w,. The second EM mode is the “7”’ idler mode with
a frequency w;. The acoustic mode will be designated as
the ““s”” sound, or signal mode oscillating at w,.

The Hamiltonian for the three modes takes the simple
form
Hp = + 3 + hdata; + 3) + hw(ala, + 3)

+ xka,(al — a)a% — a;)

hoo(a%a,

+ «*ai(a;, — a)@i —a)  (35)
where « = &, ;.,.
The equations of motion (34) reduce to
d ; - + ] + s +7 +
gt = iw,a;, — z—}';a,(a.- —a;) — %a.(a,- - a;)
(36)

da®; P + w*
_&T = W@ — -ﬁaxt(ar - ap) - %‘G,({l: - ap)

(plus their hermitian adjoints) for the optical modes. The
equations of motion for the acoustic mode a* is derived
from (35) and (12) as

.
da’,

dt ia’ia-: + ,l;hlf (a':

— a,)(a’ — a). @37

Before proceeding with detailed discussions of the solu-
tions we assume that one of the two optical modes,
arbitrarily chosen as the p mode, is so intense that it
can be described classically. Furthermore, it is assumed
that the amount of energy lost or gained by this mode
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to the idler ¢ and acoustic s modes is small compared
to its own stored energy, so that its amplitude can be
taken as a constant. This assumption conforms closely
to situations prevailing in many experiments, especially
those in which the pump power is provided by an intense
laser source.

If we take the electric field of the pump mode as E,,
cos w,iE,(r), we can establish through (1) and (9) the
identity: (a* — a,) = +i(e/2hw,) B o(e " + €7%").
Using it in (36) and (37) results in

da.:' . + . Twpt —twpt . twpl —fwpt +
7 = wea — e’ + e a, + in*e* +e7 " )al

. (38)
d—%—’ = iw,a; + ine’*"" + e ") — ay)

where the new coupling coefficient % is defined by
- 1/2 ~1/2 ikgx N3
" = iy @) Fn [ VE@-ED) aV. (30)

Equation (38), together with its hermitian adjoint, is
the main working equation for treating nonlinear inter-
actions between sound and EM waves. From this equation
we will obtain the differential equations obtained in
specific situations. The case of parametric amplification
and oscillation of a sound wave at w, and an EM wave
at w; through pumping by an EM wave at w, = w; + «,
will be discussed in Section VI. The case of mixing of
a sound wave w, with an EM pump wave «, to generate
an EM wave at «; = w, + w, will be considered in Sec-
tion IX. The inclusion of loss will be discussed in Sec-
tion VII.

V1. PARAMETRIC AMPLIFICATION AND
OsciLLATION—CLASSICAL TREATMENT

We consider the interaction between an intense EM wave
at w,, a sound wave at «, and a second EM wave at w,.
We take w, = w; + w,. Retaining only the synchronous
terms in (38), i.e., those having the same time dependence
as a’ and a*, we get

da‘: — 2 + s Twpt

o = i — e, (40)
da, _ . © -w,,t"«&

ap = T+ ine M al (41)

and their hermitian adjoints.

These equations are identical to the classical parametric
amplifier equations [4] if the creation and annihilation
operators are identified with the classical mode amplitudes
and their complex conjugates. They were also obtained
by Louisell et al. [1], for the case of two EM modes
coupled through dielectric modulation.

It follows from (40) and (41) that

d, o, _d .
dt (a'l'a'i - dt (aaa")°

April

This means that the number of idler.photons created in
a given time is equal to the number of phonons ecreated
during the same period. This statement when expressed
in terms of powers in just the Manley-Rowe relation
P./w; = P,/w,, since the energy in any mode, say j is
given by (a%a;)hw;.

The solutions of (40) and (41) are

a,() = ¢ *“"(a., cosh gt + a; sinh 51) (42)

a’(t) = e**“*(a; cosh nt — ia,, sinh qf). (43)

Tor the purpose of a classical analysis we can regard
(42) and (43) as the solutions of the normal mode ampli-
tudes where the energy per mode is given by hw.,0%a,
and fiw;a’a;. It is more convenient, however, to deal even
classically, with the number of quanta (photons and
phonons) per mode which i§ given simply by a“a. The
number of phonons at w, at ¢ = 0 is thus given by n,, =
a¥a,o (a becomes a* in the classical treatment), while the
number of photons present, initially, at the idler mode
is my = aXa;. Solving for n.(f) = a*(t)a,(t) and for
n:(f) results in

nl(t)clnnicsl = Ngo COSh2 ’I]t + Mo Sinh2 1]t

+ Sinh 27)tlm(ama.o) (44)
and
ni(t)clalslcnl = N;o GOSh2 ﬂt + Nso Sinh2 'Vlt

-+ sinh 2qtI m(a.oa,0) (45)

where I'm stands for the ‘“imaginary part of.”

The neglect of all losses limits, somewhat, the practical
importance of these equations. Their usefulness is mainly
in pointing out the basic parametric nature of the process
and in describing the ultimate behavior under ideal condi-
tions. Consider first, the case when at { = 0 we have
only a sound wave excited, i.e., n;(¢) = 0. This will cause,
according to (44) and (45), a buildup of the sound wave
and the idler wave according to

n,(f) = n,, cosh® ni — nfe’”‘

nt>>1 (46)
ni(t) = m,osinh? g — 42 g20t

a4

In a resonator type of analysis, which is the one we have
employed, so far, (46) shows that oscillation at both w;
and w, can be triggered by any residual mode energy
n4 at ¢ = 0. The lack of a threshold pumping level is,
of course, due to our neglect of losses. This situation will
be rectified in Section VIII. If we consider (46) as applying
to a traveling wave type interaction we must replace ¢
by z/v, where z is the distance traveled. IEquation (46)
shows how an input sound wave is amplified by a factor
1¢"* due to pumping by an EM wave at «,. The con-
comitant spatial amplification of the idler EM wave is
deseribed by n;(z) = (n.,/4)e"™** so that we have a means
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of converting an input sound wave into an electromagnetic
wave with an amplification of the number of input quanta.
This makes it possible to detect the presence of phonons
by optical measurements.

The case of no “input’’ phonons i.e., n,(0) = 0, leads to

n,(t) = ni sinh® gt — %'Qe”‘
7> 1 (47)
ni(t) = ni cosh® gt — o gane

PYS S 4

In practice this condition is less likely to be encountered
except at extremely low temperatures. The thermal excita-
tion causes 7n,(0) to be of the order of k7'/hw,, so that
for microwave phonons we have a thermal excitation level
corresponding to a few hundred acoustic quanta per mode
at room temperature. As an amplifier of the idler radiation
w;, it follows from (45), that for linear amplification the
temperature must be low enough so that the condition

Nio >> Neo = (e'hw./lcT . 1)—1

is fulfilled.

VII. PARAMETRIC AMPLIFICATION AND
OsCILLATION—QUANTUM-MECHANICAL TREATMENT

If we consider the a™s in (42) as creation operators
and the a’s as annihilation operators we can use them
to obtain the expectation value of any function F(a, a).
We are interested, in particular, in the time evolution
of the average number of quanta in each mode. The
expectation values for the number of quanta are:

n(8) = (¥(0) |a.()" a.(t)] ¥(0))
n(8) = (Y(0) la’i(aio)| ¥(0))

where ¢ (o) is the initial wave function of the combined
acoustic-idler system. We take (o) = [n:0, 7,0) Which
is a product of the respective harmonic oscillator wave
funetions with quantum numbers 7, and 7,o. 7y and 7,
are, as in Section VI, the number of quanta present at
t = 0 at the idler and sound modes, respectively. In
taking ¥(0) = |ni, M.0) We specify the exact number
of quanta in each mode and, because of the uncertainty
principle, sacrifice all the phase information. This gives
a result which represents an average over the relevant
phases. This, still, leads to the correct result if we are only
interested in the average number of quanta. In a more
exact treatment we would use a coherent superposition of
states for the initial wave-function ¢(0)"'"**. This aspect
of the problem will not be treated here.
From (42) and (43) we have

(48)
(49)

at(Da,(f) = aa, cosh® gt + (1 + abaq) sinh? 9i

- 37 sinh 29t[a,0.0 — (50)

a.oaio]

and a similar expression for a%(¢)a;(¢t) in which the sub-
scripts s and ¢ are interchanged. Substituting (50) in (48)
and (49) and using (14a) and (14b) yields the following
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expression for the average number of quanta as a function
of time

(1) = (N, nao| at(”)aa(t) inio, Nso)
= 4 cosh® gt + (1 - ny) sinh® i
n:(t) = ny cosh® gt + (1 4+ n,o) sinh® 4t.

(51)
(52)

If we neglect the phase dependent part of (44) and (45)
then the quantum mechanical solutions for the ex-
pectation value of the number of quanta n,(t) and n,(t) as
given by (51) and (52) are identical to the classical solu-
tions, (44) and (45) [1], except for the number unity ap-
pearing inside the bracket. This represents the zero field
vibration energy present even when n;, = n,, = 0. View-
ing (51) and (52) as those of an amplifier, this term rep-
resents the noise added to the signal by the zero field
vibrations. This noise is equivalent according to (51) and
(52), to an effective noise input of one quantum per mode.
This has been shown [1], [7] to be the limiting sensitivity of
coherent amplifiers. The missing phase dependent term
[last one in (45)] is due, as previously noted, to our choice
of Y(0) = |ni, M) and can be recovered by choosing
a coherent (Poisson Packet) initial state.!

If we consider (51) and (52) as describing the buildup
of the simultaneous idler and acoustic oscillations under
pumping at w,, we see that even at zero absolute temper-
ature, i.e., when n;, = n,, = 0, oscillation will build up
due to zero field vibrations. It is of (dubious) academic
interest to note that acoustic oscillation can be considered
as initiated by the electromagnetic idler zero-field energy
while the reverse is true for the idler mode oscillation.

VIII. PARAMETRIC AMPLIFICATION AND
OSCILLATION IN THE PRESENCE OF LOSSES

In Section VI we saw how “pumping’’ by an EM wave
at o, can give rise to a simultaneous acoustic (w,) and
electromagnetic (w;) oscillations where w, = w;, 4+ w,.
Since no losses were included, the pumping threshold for
this oscillation was zero.

It can be shown that in the high @ limit, i.e., when
the energy lost per cycle is small compared to the stored
energy, the effect of losses is merely to modify the first
terms on the right side of (40) and (41) and not the
cross coupling term. Or, if we express (40) and (41) in

1Tt may help to recall here that the electric field intensity in the
optical resonator was taken as

E,(t, ) = B,y cos w,IE,(r)

where

fv E,(1)-E,(f) dV = 1

for a TEM type propagation along the k, direction E,(r) can be
taken as

E,(r) = (%)“2 sink-r

so that the peak electric field is (2/V )5,
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a matrix form as da/di = &d, the diagonal terms are the
only ones affected. Equations (40) and (41) become

+ . +
% = Jiwa’ — g_y‘- - iﬂeiwptas
: (53)
da

= —ilw,Q, —

aa. Gs s w—iont *
d p, Tre A
where T; and T, are the ‘“ringing” times for the idier
and sound modes,respectively,which are added phenom_en—
ologically. Substituting af = Afe™*“"" and a, = A, *“**

in (53) leads to

dA% A% .

= 5 — A,
dt T, 54)
dA,

Aa kAt
g = T, Tordn

Assuming exp (of) behavior for the variables in (54)
leads to

1,1 L LY 1
gt 7) = ) 1l - )

o ==

2
(55)
for the exponential growth factor.
When the condition
> (56)
=TT,

if fulfilled, @ > 0. Both the acoustic and the idler wave
will grow with time. This corresponds to what Chiao
et al. [2], call stimulated Brillouin scattering. Using our
point of view it is seen to represent the start-oscillation
condition for a parametrie oscillator. A similar expression
was derived by Kingston [9] for the case of an optical
parametric oscillator. Using the definition of 4 (39) and
the fact that E,, is related to the peak electric field E,
by' E, ~ (2/V)'E,,, the threshold condition (56) can
be written as

B > 04T <1)<f ¢ "B, (1)-E.(r) dV)—

% FLELE 7, o

where L; = ¢T; and L, = v,T, are the mean distances
traveled during a lifetime by an idler photon and a phonon,
respectively. ‘

V, and V, are the volumes of the EM modes and
acoustic modes respectively. For minimum threshold the
factor

f ¢'**"E,(r) -Ei(x) AV

should be a maximum. Using the expressions for E,(r)
and E,(r) as given by, this occurs when

15,:1:75,,:!:76;=0.

April

This is the phase matching condition which will be dis-
cussed in detail in Section X. When this condition is
fulfilled the threshold condition can be approximated by

64T
B > - <

- ’YzkasLik'{ F

where F' ~ 8V ,/V, and where we assume that the volume
common to the three modes Is that of the acoustic column.

IX. FrEQUENCY ConvERSION BY COHERENT
SCATTERING OF LIGHT FROM A SOUND WAVE

Another class of interactions which can be handled by
the present formalism is that of frequency conversion
[10]-[12]. A phonon of frequency w, ‘“combines” with a
photon at w, to produce a new photon at the sum frequency

(58)

w; = w, + w,.

We assume again, that the intense pump field at w,
loses so little energy in the process of this interaction
that its amplitude remains constant. We go back, as in
Section VI, to (38), but this time keep only the terms
with the time factor exp [¢(w, + w,)f] = exp 7(w.t). The
result is

da: - + s g iwpt +

PTERL + ¥’ a

da*, . .

Ef = fw,a" -+ ine’“*'at; (59)

w; = w, + w,.

Assuming a real %, which is the case when momentum
is conserved, we can solve for a} and a* and, after taking
the expectation values of the operators n;(t) = {(af ({t)a;(t))
and n,(t) = {(af ()a,(t)), obtain

n:(t) = 7m0 cos” gt + n,, sin® gt
(60)
n,(t) = m,o cos’ gt + 1o sin® nt.

If only one input is present at ¢ = 0, the quanta will
“oscillate” back and forth between the two modes with
a period of 7#(27)~". The total number of quanta is n;(f) -+
n,(f) = M + 7, and is a constant. There is no average
power drain on the pump source. By turning off the pump
after a time w(24)”" we can convert an initial acoustic
input of n., phonons to an optical output of equal number
of photons. This entails an energy gain of w,/w, but,
unlike the case of parametric oscillation and amplification
described in Section VII, no increase in the number of
quanta. This basic difference between the case of para-
metric down-conversion in which amplification is possible
and parametric frequency-conversion, where it is not, is
well known. It has been treated by a number of authors
describing different physical cases [1], [13], [14]. Physically
the reason for this difference is that in the case of frequency
conversion the basic scattering process involves a combina-
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tion of a boson at w, with one at w, or w; to produce a
boson at w; = w, + @, Or w, = w; — w,. Once the supply
of w, or w; bosons is depleted the production of w; or w,
bosons must halt and the reverse process starts. In the
down-conversion process we ‘‘split” a pump boson into
an idler w; and a signal boson at w,. As long as we have
an inexhaustible supply of pump energy, which is the
case in our model, this transfer of energy can take place,
hence the continuous amplification.

Unlike the case of parametric amplification, there is no
difference in this case between the quantum-mechanical
solution for the expectation values {(a*(t)a(t)) and the
classical solution for the mode energies. This is just a
manifestation of the fact that parametric frequency con-
version cannot be initiated by zero field vibrations.

X. Puase MATCHING
The threshold condition for the buildup of acoustic
and electromagnetic oscillations as given by (56) contains
the square of the ‘‘coherence’ integral
I= [ ¢*"E,0)E@®av. (61)
14
For low threshold operation this integral must be a

miximum. If we take E,(r) and E,;(r) as standing waves
along the directions k; and k,, respectively, i.e.,

B0 = (3) sin ) o
E.() = (%)W sin (k; 1)

the coherence integral is seen to contain the factor

f ec‘k.-r(ez'kp-t

This factor is of the order of magnitude of 1/k, which
for optical frequencies is ~107° unless k, = k; -+ k,,
for which case the integral is equal to V, where V is
the volume of the common interaction region. The phase
matching condition

— e—ik,-r)(e»’h-r

— KT gV,

ko = ki + k, (63)
that must be satisfied, for low threshold, can be viewed
as a statement of conservation of momentum. The one-
dimensional analogue of this condition was first formulated
by Tien [13], extensions to three dimensions were con-
sidered by Armstrong et al. (14), and Kroll [15]. If the
interaction region is limited to a distance L, then (63)
can be violated by an amount |A(k, — k; — k,)| < 1/L
without an appreciable increase in threshold.

The vector relation (63) is shown in Fig. 1(a). Since
the velocity of sound is, typically, a factor ~10° smaller
than that of light, it follows from (63), that the maximum
sound frequency that can be generated, i.e., the maximum
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Ao ® 2Xg8in6/2

(a) (b)

Fig. 1. (a) The phase matching vector diagram for the case of para-
metric amplification (and oscillation). (b) A Bragg-type diagram
equivalent to (a). The sound wave is “receding’” from the incident
pump wave,

frequency shift, is ~107°%,. We can consequently assume,
to the same high degree of accuracy, that &, = k; and
obtain

. 0
k, = 2k, sin 5

or

W, — W = w, = 2w,<l-)(":ﬂ) sin 9 (64)

2
where v, = w,/k, is the velocity of sound in the medium,
¢ is the velocity of light in vacuum, n is the refractive
index, and @ is the angle between the direction of the
incident pump wave and the direction of scattered idler
wave.

Equation (64) was first given by Brillouin [17]. It has
been used recently in the stimulated Brillouin scattering
experiment of Chiao et al. [2], to determine the velocity
of sound at Ge¢/s frequencies.

The stimulated sound wave travels in a direction making
an angle 4(x — 6) with the pump wave direction of
propagation. The vector relationship (63) is used to draw
up Fig. 1(b) in which the sound wave front is shown.
The frequency shift (64) is consistent with the Doppler
shift experienced by a light wave incident at the Bragg
angle /2 on a sound wave receding with a velocity v,
[10], [11]. The difference between the stimulated scat-
tering [2] and earlier experiments [10], [11] is that in the
former case the sound energy is not fed in from an external
source but is generated by the light wave itself. The state-
ment about the Bragg condition becomes clear if we write
the first of (64), k, = 2k, sin /2, as \, = 2\, sin 6/2.
The angle between the incident or scattered wave normal
and the sound wave front is 6/2. The distance between
equivalent scattering planes is the sound wavelength A,.
The stimulated scattering that occurs once threshold is
exceeded takes place in all directions. We can limit it to
one direction only by lowering the losses corresponding
to the wave propagating in that direction. This can be
done by forming an optical resonator with an axis along 6.
We can, in principle, lower the threshold even further
by resonating the acoustic wave in the complimentary
direction %(w — 6). In cases where the acoustic losses
are so high that the mean phonon lifetime is shorter than
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K [ 7 4 |
9/' . A~ " | A Ap = 2hg sing/2
2]
(a) (b)

Fig. 2. (a) The phase matching vector diagram for the case of fre-
quency conversion. (b) A Bragg-type diagram equivalent to (a).
The sound wave is approaching toward the incident pump wave.

L/v,, “resonating” the acoustic wave will not lower the
threshold. A change of 6 can thus afford a means of tuning
the frequency shift of the scattered wave and the con-
comitant sound frequency. Similar considerations, for the
case of light waves, have been discussed by Kroll [15].

In the frequency conversion experiment the phase
matching eondition takes the form

k; = kp + k, (65)
which is just a statement of conservation of momentum
between the input pump photon and phonon and the
output idler photon.

The phase matching vector diagram for the frequency
conversion of light by sound is shown in Fig. 2(a). It is
identical to the case of amplification, I'ig. 1(a), except
for a reversal in the direction of the sound wave. The
angular relationship between the incident EM wave at w,,
the scattered EM wave at w;, and the sound wave at w,,
plus the energy counservation condition w; = ©, + w,,
are all consistent with Doppler shifting of the frequency
of a light wave incident on an approaching sound wave
at the first-order Bragg angle. Figure 2(b) is the Bragg
diagram for this case.

XI. TRAVELING WAVES INTERACTION

Up to this point the treatment was devoted to inter-
action between resonator-type modes and was in the time
domain. Another class of problems is that of the traveling
wave interaction in which the distance variable, say z
takes the place of i.

We can transform from the temporal domain to the
spatial domain by replacing » by k and ¢ by z. The equa-
tions of motion for the parametric amplification case can
be written directly from (40) and (41) as

d(];‘: . . ik

- = ik.ah — 1ne’™a,

das . %, —tkpz +

7 = —1ik,a, 1+ tn¥e a; (66)

where
Y v 172
n~ <64:€T) (kzks) Epump-

The quantity efa; is now proportional to P,/w; i.e.,
classically, to the boson flux so that the Manley-Rowe
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relations are again satisfied. The solutions of (66) can
be taken directly from (42) through (47).

In a similar way we can write the equations for fre-
quency conversion by transforming (59). The result is

da’; . . h ks
= tk.a’ -+ in'e""a’
67)
da®t . . ihes
*-dz" = tk,a’ + ine*"*at.

The solutions are obtained directly from Section IX.

XII. SUMMARY

The problem of interaction of light and hypersound
has been considered. The interaction is provided by a
perturbation Hamiltonian which describes the change in
electrostatic energy due to the presence of acoustic waves.
Specific solutions were obtained for the cases of two EM
and one sound modes. Losses were included phenomeno-
logically in order to obtain the threshold condition for
stimulated Brillouin scattering. The relation between the
quantum-mechanical and classical solutions is examined
and except for presence of zero-field terms in the case
of parametric amplification they lead to the same results.
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