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Propagation Losses in Metal-Film-Substrate
Optical Waveguides

ELSA M. GARMIRE a~p 1. STOLL

Abstract—The propagation losses in metal-film-substrate two-
dimensional optical waveguides are calculated. Losses for confined
modes may become large and are at least an order of magnitude
larger for TM than for TE modes. Higher order modes suffer more
loss than the fundamental mode. Such mode-dependent loss can
make efficient mode analyzers, useful for integrated optics modula-
tion schemes.

INTRODUCTION

LANAR films deposited on substrates have recently
been shown to be very useful for waveguiding light,
with promise for the fabrication of integrated
optical circuits [1]-[5]. In this paper we shall explore
optical propagation losses in planar film waveguides in
the presence of a metal electrode, such as that required
for electrooptic modulation. We consider a wide range
of waveguide thicknesses and refractive indices and
ignore scattering losses, which are negligible in semi-
conductor epitaxial layer waveguides [6]. For suffi-
ciently thin films the optical propagation losses may be
substantial; furthermore, the TM modes are at least ten
times as lossy as TIS modes. This suggests that a metal
deposit on a waveguiding film can make an effective
polarization analyzer, a convenient element to incor-
porate into integrated optical circuits.
Fig. 1 depicts the planar geometry. The spatial varia-
tion of the TE electric field for light of wavelength A
in a guide T wavelengths thick is given by
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For TM modes replace E,(z, z) with H,(z, z) and the
form remains the same. The physical origin of the loss
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we consider here is the absorption of the tail of the
field profile that extends into the lossy metal. The metal
is described by a complex refractive index n; = n — 1k,
whose value is typically close to those shown in Table T
| 7]. This introduces complex values into all the propaga-
tion equations. As a matter of notation we shall write
all complex parameters in the form H = H, + iH,.

In this paper we shall make the assumption that the
light intensity distribution goes to zero inside the metal
in a distance much smaller than the waveguide thick-
ness, i.e, [H| < [Q|. This condition is valid when the
dielectric constant of the metal is sufficiently high. Nu-
merically the requirement ist

0> ()} @
where m is the waveguide mode order (m = 0,1,2, -+ ).
This is easily fulfilled for the waveguides considered
here, which are an appreciable fraction of a wavelength
thick and contain only a few guided mode orders.

The numerical values for the dimensionless parameters
Q, II, P, and B are found by matching appropriate
boundary conditions [8]. We calculate the propagation
loss (i.e., B;) from H, determined by the following tran-
scendental equation:

2
(:22_

H = tan™ 7, 7

— 1+ tan™ (%' 172,) + mm,

m=0:1J2;"' (3)

where the constants are Cy, = 2T \/—n_f _—?; Cy =
2xTVn® — ng: = 20T A¢; 12r = 1, a3 = 1 for TE
modes; and 7., = n,°/n,", mas = n"/ny° for TM modes.
The complex propagation constant B is determined from

B = (2xTn,)* — H*. (4)

PropracaTioN Loss

The aim of this paper is to determine the dependence
of optical loss on waveguide thickness T' and dielectric
discontinuity Ae. It is prohibitive to numerically caleulate

! This is derived from the relationship Q* + H? = C»2 |Q* >
|H|* = |H|* « |Cy/% From Table T observe that typically k* > n?
and [ni? > na?. Thus [Cyl ~ 257k, Since |H| ~ (m + 1)x, the
condition is [(m + 1)/2]) < kT'.

Authorized licensed use limited to: Dartmouth College. Downloaded on April 16,2022 at 22:33:44 UTC from IEEE Xplore. Restrictions apply.



764

10
8o% TE,
)
1 +E,
-3
10
; | — ¢, |
i
(1p)
] T ST T T e - - -1
_q ) Y-(xrno PAPER ) '
10 - ' JRETAL n-ik=ny| o}
X=0
1? ! WAVEGUIDE: N, | |
:X-AI/ .
! SUESTRATE: N4 !
1 X !
s R ——|
| [ -
t'E H 10

Fig. 1. Universal curves of waveguide loss as a function of
dielectric constant for constant guide thickness; percentage
of energy confined inside the guide region is indicated at
typical points. Numbers on ordinate give loss for l-u light
guided in GaAs. Inset depicts geometry.

complex solutions to (3) for many values of Ae and T.
For TE modes we can obtain simple algebraie solutions
and show that B;T* is a universal function of AeT* with
a proportionality factor that depends only on refractive
indices. This analysis is valid also for TM modes in rela-
tively thick waveguides with moderate dieleetric dis-
continuities.
The mathematical assumptions we shall use are

ICzlﬂm] > Hr M2z = 1. (5)

For TE modes this is just the condition expressed in
(2).* For TM modes, the conditions can be written

T > (w) LB (6)

Ng — N3 K Ny > - 3
~ 2

That is, the diclectrie discontinuity must be small and
the guide must be thicker than some characteristic value.
From the numbers in Table T we see that the latter con-
dition is by no means always satisfied.

Using the assumption of (5), we may simplify (3)
and (4), scparate real and imaginary parts, and obtain

H .
Ca = snH. (=1 @
H, Tm ( v—ln—)cz, cos H,
R 21 2[_——
H. = (—l)m — (43 cos H, (8)
HiHL.
Bi - _577"”3 (9)

We are intercsted in exploring the optical loss for a
range of dielectric discontinuitics and waveguide thick-
nesses. Since we know (m + ) = < H, < (m + 1) =
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TABLE I
Waveauipe PARAMETERS

102k
N R
microns n ks TE TM 51 82 83
0.5 0.5 6 1.5 0.93 15 0 0.3 0.5
1 1.8 10 3.3 0.55 5 0 0 0
10 25 67 3.3 0.16 70 1.5 1.756

for the mth order mode, we specify a value for H,, calcu-
Jate appropriate waveguide thickness and dielectric dis-
continuity, and determine corresponding optical loss.
This eliminates the need to solve a transcendental equa-
tion.

Writing the optical loss (units of inverse wavelengths)
in terms of H,,

B _x HCxF W
TS T T H, = tan 4,
where
Ka= —Im( 12 E)'
nz"lzx'\/'ﬁ; —_m

Thus it is elear that y7™ is a universal function of A7
(i.e., H,) with a shape that is independent of wavelength
or refractive indices and a magnitude that is propor-
tional to «.

In Fig. 1 we show these loss curves y7™ as a function
of AeT™? for the three lowest order modes. As AeT? be-
comes small, the loss gocs to zero; this is waveguide cut-
off (H, =~ (m .+ 3)=). Physically this reflects the fact
that when the mode is not confined, the fraction of its
power propagating in the lossy metal is negligible. This
limit is not useful, however, since the fraction of energy
propagating inside the guide becomes small. For con-
venience we have indicated this fraction at typical points
in the figure.

For large values of AeT* there is strong confinement of
several modes. In this region H, = (m + 1)# and 7%
tend toward a constant value:

2
'YTa —9x(m ;- 1) .

This formula allows us to make a quick estimate of the
operating losses from the magnitude of «. An approxi-
mate form of «, valid when |n,|2 3> no? and k* > n?, is
given by

(11)

s TE

= |1 . (12)
2 T™
ng

Values for typical physical cases are shown in Table
I. Recalling that y is expressed in units of inverse wave-
lengths, the optical loss is by no means small when the
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guide thickness becomes comparable to a wavelength,
The numerical values of v7° in Tig. 1 are given for TE
light of wavelength 1 x. From this graph it can be seen
that a metal layer on a guide 1 p thick will introduce
~e ® attenuation in 1 em for TE modes of wavelength 1 p.

From the loss estimate of (11), we observe that higher
order modes suffer substantially more loss. Furthermore
we observe that TM modes are much more lossy than TE
modes [9]. For guides in which this simplified analysis
describes TM modes, the ratio of TM to TE loss is
xmv/ ke = k*/n.®. Observe, finally, that the losses are a
very strong function of waveguide thickness and nearly
independent of dielectric discontinuity (above cutoff).

We seek now to caleulate the loss in waveguides that
violate the conditions of (6). In cases of interest, IT; K
H,, and we write

2
H, = tan™} n,g\/%% — 14 Re (tan™" (Coynay/11,)) 4+ mm,

m=01,2 - (13)

H. = ulmﬁtﬁn" (Corna/H,))
i 1 + j-l( 1232 — }1'2)A1/2
where f = qa3 + (1/905 — m23) H,2/Cuy®. These equations
hold only as long as Csy® — I1,2 > H{#. Physically this
means that the waveguide is above optical cutoff.

We solved the real transcendental (13) for H, by
computer and then caleulated I7; and finally the optical
loss B; = — H.H/B,. The shape of these curves differs
somewhat from the universal curves in Tig. 1. Never-
theless, 30-percent accuracy can be obtained with ap-
proximate scaling laws. We may use the universal curve
for TM modes if the abscissa remains AeT?, but the
ordinate becomes y7%. The value of 8 was ecalculated
to give approximate agreement for 7' < 10 and Ae < 10.
Heurigstic values of § for the first three mode orders are
shown in Table I. When 8 = 0, (10) can be used.

We shall show how to caleulate numerically the TM
loss in any waveguide of given Ae and T using the ap-
proximate scaling law. It is necessary first to scale the
loss parameter y to a value of T where the curves of the
ficure are valid. The region 7 = 10 is valid for all cascs
of physical interest and we used this in estimating 8.
At T = 10 we correlate TM loss for light at the wave-
length of interest to TE loss for light of 1-p wavelength
by the ratios of x. Thus we have, for a guide of thick-
ness 7' and dielectrie discontinuity Ae:

(14)

v =2 (E ot an

K l'rx-‘w
where yT°|p'* is read from the graph in Fig. 1 for the
same value of Ae7”. Note that for 10-u light, failure to
incorporate & into the ealeulation may introduce an error of
almost two orders of magnitude.

The metal layer introduces a shift in the TM waveguide
cutoff thickness of at most px7. — 2T < 1/4 V/A¢, an
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effect that was included in our computer caleulations but
will not be discussed in detail here.

MobpE ANALYZER

It has been shown that optical losses are higher for
some modes than for others. This suggests that a metal
film deposited on a planar waveguide may make an
effeetive mode analyzer. Such an analyzer will be useful
in integrated opties cireuits as an important element
of amplitude modulators. When a modulation signal is
used to convert the waveguided light from one mode
into another, this mode analyzer will sclectively transmit
only the original waveguide mode, resulting in amplitude
modulation.

For example, the high ratio of TM to TE loss sug-
gests a polarization analyzer. A metal-deposited guide
2.5 wavelengths thick with dieleetric discontinuity Ae =
0.048 and length 0.5 em transmits ten times as much TE
light at 1 p as TM light. Suppose the guide is composed
of GaAs oriented along the [110] face; then a voltage
applied across the guide produces the optimum conver-
sion of one polarization into the other [10]. If light is
coupled into such a waveguide modulator as the rela-
tively lossless TIS mode, an applied voltage will convert
some of it into the lossy TM mode. Thus we have devised
a variable loss, or amplitude modulator. An exact theory
of such a modulator would require considering the effect
of erystal anisotropy on the cleetromagnetic modes of the
waveguide [11] and is beyond the scope of this paper.
A rough estimate for bulk GaAs indicates that full con-
version of one polarization into the other can he achieved
in 0.5 em with 5 V across the 2.5-p-thick waveguide.

Another example of an intensity modulator utilizing
mode-dependent losses involves variable mode conver-
sion into higher order modes. It has been noted that the
losses are proportional to (m + 1)2; in particular, the
m = 1 mode has four times the loss of the m = 0 mode,
if both are well eonfined. An effective intensity modula-
tor would employ surface acoustic waves to couple TM,
modes into lossy TM; modes in the presence of a metal-
liec electrode in an arrangement similar to that used in
[12]. An electrooptic phase grating [13] could also be
employed to couple light into higher order modes.

The usc of mode-dependent optical loss for intensity
modulation will be most useful in the design of totally
integrated optical circuits in which a modulator and
detector are on the same chip. Then the grating coupler
analyzers or external polarizers that have been used to
date will not be employable.

REFERENCES

(11 R. Shubert and J. H, Harris, “Optical surface waves on thin
films and their application to integrated data processors,”
IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp.
1048-1054, Dee. 1968,

[2] S. Miller, “Integrated optics: An introduction,” Bell Syst.
Tech. J., vol. 48, p. 2059, 1969.

(31 D. Hall, A. Yariv, and E. Garmire, “Observation of propa-
gation cutoffl and its control in thin optical waveguides,”
Appl. Phys. Lett., vol. 17, p. 127, 1970.

Authorized licensed use limited to: Dartmouth College. Downloaded on April 16,2022 at 22:33:44 UTC from IEEE Xplore. Restrictions apply.



766 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-8, No. 10, ocroBer 1972

[4] J. E. Goell and R. D. Standley, “Integrated optical cir-
cuits,” Proc. IEEE, vol. 58, pp. 1504-1512, Oct. 1970.

[5] P. K. Tien, “Light waves in thin films and integrated optics,”
Appl. Opt., vol. 10, p. 2395, 1971.

[6] D. Hall, A. Yariv, and E. Garmire, “Optical guiding and
electro-optic modulation in GaAs epitaxial layers,” Opt.
Commun., vol. 1, p. 403, 1970.

(71 See, for example, Applied Optics and Optical Engineering,
R. Kingslake, Ed. New York: Academic Press, 1965, p. 316.

[8] See, for example, W. W. Anderson, “Mode confinement
and gain in junction lasers,” IEEE J. Quantum Electron.,
vol. QE-1, pp. 228-236, Sept. 1965.

[91 Compare this result to that of J. Kane and H. Osterberg,

J. Opt. Soc. Amer., vol. 54, p. 347, 1964 (who found the
TM mode was less lossy when ne was complex, but »n and
ns were real).

[10] S. Namba, “Electro-optical effect of zincblende,” J. Opt.
Soc. Amer., vol. 51, p. 76, 1961.

[11] D. F. Nelson and J. McKenna, “Electromagnetic modes
of anisotropic dielectric waveguides in p-n junctions,”
J. Appl. Phys., vol. 38, p. 4057, 1967.

[12]1 L. Kuhn, P. F. Neidrich, E. G. Lear, and E. G. Lean,
“Optical guided wave mode conversion by an acoustic sur-
face wave,” Appl. Phys. Lett., vol. 19, p. 428, 1971,

{131 J. M. Hammer, “Digital electro-optic grating deflector and
modulator,” Appl. Phys. Lett., vol. 18, p. 147, 1971.

Fluctuation Mechanism of Ultrashort Pulse Generation

by Laser With Saturable Absorber

P. G. KRYUKOV axp VLADILEN STEPANOVICH LETOKHOV

Abstract—This paper presents a theoretical treatment of the
fluctuation mechanism involved in the generation of picosecond
laser pulses with saturable absorbers. The processes responsible
for the shortening of the pulsewidth and for selection of the most
intense pulse are treated. Some experimental results that confirmed
the treatment are presented. The influence of inertia of saturable
absorber and nonlinear losses (self-focusing and self-modulation)
is discussed.

INTRODUCTION

EMARKABLE progress in obtaining high-power
R short light pulses was achieved in 1966 [1], [2].
Measurements of pulse duration [3], [4] showed

the ability of lasers with saturable absorbers to generate
trains of pulses a few picoseconds in time duration. The
study of emitted radiation from lasers having saturable
absorbers in their fcedback ecavity was appreciably ex-
panded after the introduction of the two-photon fluores-
cence method for time-duration measurements [3], [6].
The simplicity of this makes it very attractive. Unfortu-
nately, the two-photon fluorescence method has no
explicit definiteness, as it produces similar records for
both mode-locked pulses and for irregular fluctuation
spikes occuring from the multimode radiation from any
laser [7]-[9]. The difference lics in the value of the con-
trast ratio, which changes from 3 for an ideal ultrashort
pulse train to 1.5 for incoherent multimode radiation
(Gaussian noise) [8], [10], [11]. It is thus necessary
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to measure the contrast ratio with very high aceuracy
if one has to be sure of the presence of ideal mode-locked
pulses [12]. In addition, it was found that the actual
pulse duration of the Nd:glass laser with a saturable ab-
sorber is an order of magnitude greater than the limiting
duration defined by the spectral width of the radiation
[2]. To explain this fact, the author of paper [13] has
proposed a frequency “chirping” mechanism due to dis-
persion, which broadens the time duration of the sub-
picosecond light pulses. On the basis of this mechanism,
the use of the pulse compression method to obtain shorter
time-duration pulses [13], [14] was suggested. By con-
trast, in [15], [16] the authors succeeded in finding a
subpicosecond structure within the ultrashort pulses with
no compensation for the frequency chirping. Many pa-
pers, besides those mentioned here, have been concerned
with the study of these two facts. Detailed information
on the question may be found in [17], [18].

Far less attention has been paid to the study of the
dynamics of ultrashort pulse formation process. Creation
of the regular train of ultrashort pulses was considered
to be an evident process, the so-called “self-mode locking
by a saturable absorber.” Previously, mode locking in
gas and solid-state lasers by intracavity active-loss mod-
ulation was studied [19]-[21]. In this case, the periodic
disturbance of the resonator gradually inereases the num-
ber of modes and, finally, results in the strict periodie
sequence of pulses with time duration =, =~ T'/m, where
m is a number of locked modes and 7" is the repetition
period. A laser utilizing a saturable absorber also emits
a strictly periodic sequence of very short pulses with a
broad radiation spectrum. This formal resemblance gives
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